Imaging morphological details and pathological differences of red blood cells using tapping-mode AFM.
نویسندگان
چکیده
The surface topography of red blood cells (RBCs) was investigated under near-physiological conditions using atomic force microscopy (AFM). An immobilization protocol was established where RBCs are coupled via molecular bonds of the membrane glycoproteins to wheat germ agglutinin (WGA), which is covalently and flexibly tethered to the support. This results in a tight but non-invasive attachment of the cells. Using tapping-mode AFM, which is known as gentle imaging mode and therefore most appropriate for soft biological samples like erythrocytes, it was possible to resolve membrane skeleton structures without major distortions or deformations of the cell surface. Significant differences in the morphology of RBCs from healthy humans and patients with systemic lupus erythematosus (SLE) were observed on topographical images. The surface of RBCs from SLE patients showed characteristic circular-shaped holes with approx. 200 nm in diameter under physiological conditions, a possible morphological correlate to previously published changes in the SLE erythrocyte membrane.
منابع مشابه
Correlated atomic force microscopy and fluorescence lifetime imaging of live bacterial cells.
We report on imaging living bacterial cells by using a correlated tapping-mode atomic force microscopy (AFM) and confocal fluorescence lifetime imaging microscopy (FLIM). For optimal imaging of Gram-negative Shewanella oneidensis MR-1 cells, we explored different methods of bacterial sample preparation, such as spreading the cells on poly-L-lysine coated surfaces or agarose gel coated surfaces....
متن کاملAtomic force microscopy of red-light photoreceptors using peakforce quantitative nanomechanical property mapping.
Atomic force microscopy (AFM) uses a pyramidal tip attached to a cantilever to probe the force response of a surface. The deflections of the tip can be measured to ~10 pN by a laser and sectored detector, which can be converted to image topography. Amplitude modulation or "tapping mode" AFM involves the probe making intermittent contact with the surface while oscillating at its resonant frequen...
متن کاملFrequency and force modulation atomic force microscopy: low-impact tapping-mode imaging without bistability
Since the 1980s, atomic force microscopy (AFM) has rapidly developed into a versatile, high-resolution characterization technique, available in a variety of imaging modes. Within intermittent-contact tapping-mode, imaging bistability and sample mechanical damage continue to be two of the most important challenges faced daily by AFM users. Recently, a new double-control-loop tapping-mode imaging...
متن کاملCorrelated atomic force and transmission electron microscopy of nanotubular structures in pulmonary surfactant.
Pulmonary surfactant stabilizes the lung by reducing surface tension at the air-water interface of the alveoli. Surfactant is present in the lung in a number of morphological forms, including tubular myelin (TM). TM is composed of unusual 40 x 40 nm square elongated proteolipid tubes. Atomic force microscopy (AFM) was performed on polymer-embedded Lowicryl and London Resin-White (LR-White) unst...
متن کاملTopography imaging with a heated atomic force microscope cantilever in tapping mode.
This article describes tapping mode atomic force microscopy (AFM) using a heated AFM cantilever. The electrical and thermal responses of the cantilever were investigated while the cantilever oscillated in free space or was in intermittent contact with a surface. The cantilever oscillates at its mechanical resonant frequency, 70.36 kHz, which is much faster than its thermal time constant of 300 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biological chemistry
دوره 385 10 شماره
صفحات -
تاریخ انتشار 2004